Transfer learning is a powerful technique in artificial neural networks that allows a model to leverage knowledge gained from one task and apply it to another related task. Instead of training a model from scratch, which can be time-consuming and requires a lot of data, transfer learning uses pre-trained models that have already learned features from a large dataset. For example, a model trained on thousands of images to recognize general objects can be fine-tuned to identify specific types of objects, like dogs or cars, with a smaller dataset. This speeds up the training process and often leads to better performance because the model starts with a solid foundation of knowledge. Transfer learning is especially useful in fields like image recognition and natural language processing, where large amounts of data can be difficult to gather.
This software is researched and edited by
Rajat Gupta is the founder of Spotsaas, where he reviews and compares software tools that help businesses work smarter. Over the past two years, he has analyzed thousands of products across CRM, HR, AI, and finance — combining real-world research with a strong foundation in commerce and the CFA program. He's especially curious about AI, automation, and the future of work tech. Outside of SpotSaaS, you'll find him on a badminton court or tracking the stock market.
Disclaimer: This research has been collated from a variety of authoritative sources. We welcome your feedback at [email protected].
Connecting Smart Buyers with Leading Sellers
Find the perfect software for your needs or showcase your product to 250,000+ buyers. SpotSaaS makes it easy for everyone to succeed